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We analyze gene coexpression network under the random matrix theory framework. The nearest-neighbor
spacing distribution of the adjacency matrix of this network follows Gaussian orthogonal statistics of random
matrix theory �RMT�. Spectral rigidity test follows random matrix prediction for a certain range and deviates
afterwards. Eigenvector analysis of the network using inverse participation ratio suggests that the statistics of
bulk of the eigenvalues of network is consistent with those of the real symmetric random matrix, whereas few
eigenvalues are localized. Based on these IPR calculations, we can divide eigenvalues in three sets: �a� The
nondegenerate part that follows RMT. �b� The nondegenerate part, at both ends and at intermediate eigenval-
ues, which deviates from RMT and expected to contain information about important nodes in the network. �c�
The degenerate part with zero eigenvalue, which fluctuates around RMT-predicted value. We identify nodes
corresponding to the dominant modes of the corresponding eigenvectors and analyze their structural properties.
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I. INTRODUCTION

A. Complex networks

Gene expression information captured in microarrays data
for a variety of environmental and genetic perturbations, in
conjunction with other sources such as protein-protein or
protein-DNA interaction and operon organization data,
promises to yield unprecedented insights into the organiza-
tion and functioning of biological systems �1,2�. It has been
increasingly realized that dissecting the genetic and chemical
circuitry prevents us from further understanding the biologi-
cal processes as a whole. In order to understand the com-
plexities involved, all reactions and processes should be ana-
lyzed together. To this end, network theory will be used. It
has been getting fast recognition to study systems which
could be defined in terms of units and interactions among
them. These studies revealed that the available data from
gene coexpression network share some unexpected features
with other complex networks as diverse as the internet rout-
ers. In order to understand the behavior of complex systems
such as gene coexpression network, several simple models
based on the simple principles and capturing essential fea-
tures of the unerlying system, have been presented �3–5�.

In this paper, by using network theory and random matrix
theory �RMT�, we analyze gene coexpression network. First,
we generate network from the gene coexpression data col-
lected form six brain regions that are metabolically relevant
to Alzheimer’s disease �6� by using appropriate threshold and
then study the spectra of this network under the RMT frame-
work. Information about the genes that are preferentially ex-
pressed during the course of Alzheimer’s disease could im-
prove our understanding of the molecular mechanisms
involved in the pathogenesis of this common cause of cog-
nitive impairment in senior persons, provide new opportuni-
ties in the diagnosis, early detection, and tracking of this
disorder, and provide novel targets for the discovery of inter-
ventions to treat and prevent this disorder. Information about

the genes that are preferentially expressed in relationship to
normal neurological aging could provide new information
about the molecular mechanisms that are involved in normal
age-related cognitive decline and a host of age-related neu-
rological disorders, and they could provide novel targets for
the discovery of interventions to mitigate some of these del-
eterious effects.

Coexpression networks have also been known as rel-
evance networks. The terminology has been introduced by
Butte and Kohane �7�. Since then, properties of the relevance
networks have been extensively studied �8�.

The paper is organized as follows. After introducing the
relevance of network theory and gene coexpression network,
we discuss the recent outcome of RMT analysis of complex
networks in Sec. I B. The main goals of our eigenvector
analysis are written in the Sec. I C. Section II describes the
important achievements of RMT and explains its various
properties we use in our analysis. Section III sheds light on
the data and network construction. Section IV presents vari-
ous numerical results. Section V concludes the paper with a
discussion on the relevance of current analysis as well as
suggests future directions.

B. RMT of network spectra

Our previous work �9� showed that various vastly studied
model networks follow random matrix predictions of Gauss-
ian orthogonal statistics �GOE� at the level repulsion domain.
We demonstrated that nearest-neighbor spacing distribution
�NNSD� of protein-protein interaction network of budding
yeast follows RMT prediction as well �9�. This is a promis-
ing result which suggests that these networks can be modeled
as a random matrix chosen from an appropriate ensemble.
The universal GOE statistics of eigenvalues fluctuations
could be understood as some kind of randomness spreading
over the protein-protein interaction network and model net-
works capturing real-world properties. Recently, covariance
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matrix of amino acid displacement has been analyzed under
RMT framework �10�. The analysis shows that the bulk of
eigenvalues follows universal GOE statistics of RMT. In the
present paper, we analyze gene coexpression network �6� un-
der RMT framework. First, we calculate nearest-neighbor
spacing distribution of network spectra and then perform ei-
genvector analysis to detect nodes having specific contribu-
tion to network.

C. Important nodes and connections

It is now well known that various real-world systems are
scale-free networks �3�. The scale-free nature of networks
suggests that there exist few nodes with very high degrees.
Motivated by this finding, they suggested that since these
nodes are responsible to hold the whole networks, henceforth
they are the most important ones. Some other analyses �by
Newman and others� of real-world networks show that com-
plex networks have community or module structure �11,12�.
Modules are the division of network nodes within which the
network connections are dense, but between which they are
sparser. The modularity concept assumes that system func-
tionality can be partitioned into a collection of modules and
each module performs an identifiable task, separable from
the functions of other modules �13�. Analysis of module
structure involves betweenness measure. Betweenness of an
edge is defined as the number of shortest path between pairs
of nodes going through the edge. Betweenness studies of
real-world networks suggest that the nodes connecting the
different communities are the most important ones, which
has been verified in the metabolic networks by Guimerá and
Amaral �13�.

Above description emphasizes on the importance of nodes
depending on their position in the network, as these nodes
characterize network properties. On the other hand, Erdös-
Rényi �ER� and Strogatz-Watts �SW� models emphasize on
the importance of random connections in the networks. In
the ER model, any two nodes are connected with probability
p. One of the most interesting properties of ER model is the
sudden emergence of various global properties, such as
emergence of a giant cluster. As p increases, while number of
nodes in the graph remains constant, the giant cluster
emerges through a phase transition �14�. Further, the SW
model shows the small world transition with the fine tuning
of number of random connections �15�. Our previous RMT
analysis of the spectra of SW model networks �9� shows that
at the SW transition there is a transition to the spreading of
randomness in the network characterized by the correlations
between nearest eigenvalues. In the current paper, we ana-
lyze spectra of the gene coexpression network under RMT
framework. Particularly, we study eigenvectors of the adja-
cency matrix of this network. The spectra have two parts:
one part which follows RMT predictions of universal GOE
statistics and other part which does not follow RMT predic-
tion. The eigenvectors deviating from the RMT prediction
provide information about the influential or important nodes
in the network.

II. RANDOM MATRIX STATISTICS

RMT deals with the statistical properties of matrices with
independent random entries. To be self-consistent, we give a

brief introduction of the RMT here and explain various RMT
properties of eigenvector components which we will use in
our analysis. RMT was initially proposed to explain the sta-
tistical properties of nuclear spectra �16�. Later, this theory
was successfully applied in the study of the spectra of differ-
ent complex systems such as disordered systems, quantum
chaotic systems, and large complex atoms �17�. Recent stud-
ies illustrate the usefulness of RMT in understanding the
statistical properties of the empirical cross-correlation matri-
ces appearing in the study of multivariate time series of the
following: the price fluctuations in the stock market �18�,
electro encephalogram �EEG� data of brain �19�, variation of
various atmospheric parameters �20�, etc. Recent analysis of
complex networks under RMT framework �9,10,21,22�
shows that various network models and real-world network
also follow universal GOE statistics. Furthermore, localiza-
tions of eigenvectors have also been used to analyze various
structural and dynamical properties of real and model net-
works �23,24�.

In the following, we present spacing distribution and �3
statistics of random matrices. We denote the eigenvalues of a
network by �i , i=1, . . . ,N, where N is size of the network
and �1��2��3� ¯ ��N. In order to get universal proper-
ties of the fluctuations of eigenvalues, people usually unfold

the eigenvalues by a transformation �̄i= N̄��i�, where N̄ is
averaged integrated eigenvalue density �16�. Since we do not

have any analytical form for N̄, we numerically unfold the
spectrum by polynomial curve fitting �for elaborate discus-
sion on unfolding, see Ref. �16��. After unfolding, average
spacing is unity, independent of the system. Using the un-

folded spectra, we calculate spacings as si= �̄i+1− �̄i. NNSD
is defined as the probability distribution �P�s�� of these si’s.
In the case of GOE statistics,

P�s� =
�

2
s exp�−

�s2

4
� . �1�

The �3 statistic measures the least-squares deviation of
the spectral staircase function representing the averaged in-

tegrated eigenvalue density N̄��� from the best straight line
fitting for a finite interval L of the spectrum, i.e.,

�3�L;x� =
1

L
min
a,b
�

x

x+L

�N��̄� − a�̄ − b�2d�̄ , �2�

where a and b are obtained from a least-squares fit. Average
over several choices of x gives the spectral rigidity �3�L�.
For the GOE case, �3�L� depends logarithmically on L, i.e.,

�3�L� �
1

�2 ln L . �3�

The following section explains the properties of eigenvectors
of random matrices.

Eigenvector analysis

The distribution of eigenvector components is studied to
obtain system-dependent information. Let ul

k be the lth com-
ponent of kth eigenvector uk. The eigenvector components of
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a GOE random matrix are Gaussian-distributed random vari-
ables. For this the distribution of r= 	ul

k	2, in the limit of large
matrix dimension, is given by Porter-Thomas distribution
�25�, i.e.,

P�r� =
N


2�r
exp�− Nr

2
� . �4�

Shannon entropy for the state whose components are de-
scribed by the above distribution would be given by in large
N limit as �25�

Hs � − N�
0

�

r ln�r�P�r�dr � ln�N

2
� . �5�

Additionally, inverse participation ratio �IPR� is also consid-
ered to study the RMT features of the eigenvectors. The IPR
of eigenvector is defined as

Ik = �
l=1

N

�ul
k�4, �6�

where ul
k , l=1, . . . ,N are the components of eigenvector uk.

The meaning of Ik is illustrated by two limiting cases: �i� a
vector with identical components ul

k�1 /
N has Ik=1 /N,
whereas �ii� a vector with one component u1

k =1 and the re-
mainder zero has Ik=1. Thus, the IPR quantifies the recipro-
cal of the number of eigenvector components that contribute
significantly. For a vector with components following distri-
bution �4�, Ik�3 /N.

III. DATA AND NETWORK CONSTRUCTION

The data set �GSE5281� was obtained from gene expres-
sion omnibus �6�. Liang et al. �2� studied gene expression
profiles from laser capture microdissected neurons in six
functionally and anatomically distinct regions from clinically
and histopathologically normal-aged human brains. From
these data sets, only 74 normal samples were used to con-
struct the coexpression networks. In the original study, the
Affymetrix Human Genome U133 Plus 2.0 Array was used.
This microarray contains 54675 oligonucteotids �probe sets�
representing the expressed human genes for each samples.
On the microarray, one gene is represented by one or more
probe sets. Each probe set is built up from 25 mer length
oligonucleotides, so-called probes �26�. In the present study,
probe sets are the units of observation. For the identification
of probe sets, the Affymetrix IDs were used. The Pearson’s
product-moment correlation was calculated for each probe
set–pair expression level and those which have value greater
than 0.88 are used to construct the gene coexpression net-
work. This network consists of 5000 nodes and 1 201 480
undirected edges. Nodes represent probe set denoting genes
and edges denote their coexpression levels.

From this weighted network, we construct a sparse binary
network as following. We choose the value of threshold be-
ing r=0.89. If the coexpression strength is greater than r than
the corresponding element in the matrix gets value 1, other-
wise it takes value 0. Threshold value of r=0.89 leads to a
network with much less number of edges and results into

many disconnected components. Note that choosing the
threshold value is a crucial step and different schemes have
been proposed to select it �27,28�. We sort out the nodes and
edges forming largest connecting cluster, which is of the size
N=3179 and 46 033 connections. The average degree of this
network is k��30. RMT analysis is done for this biggest
component. Figure 1 shows the adjacency matrix of this
component and Fig. 2 is the degree distribution.

IV. RESULTS

In the following, we present the various RMT results for
gene coexpression network constructed above. We calculate
the eigenvalues and eigenvectors of the adjacency matrix
corresponding to the largest connected network. Since this is
an undirected network, eigenvalues of adjacency matrix are
real and we denote them as �i , i=1. . .N. Eigenvectors are
denoted as uk , k=1. . .N.

A. Spacing distribution and �3 analysis

From this spectrum, we calculate NNSD P�s� as described
in Sec. II and �3�L� statistic using Eq. �2�. Figure 3�a� shows
that NNSD agrees well with the NNSD of GOE matrices �1�
with the value of Brody parameter �9,29� ��1.

Figure 3�b� plots the �3�L� statistics. It can be seen that
�3�L� statistics agrees well with the GOE statistics up to the
value of L�25 �which is much less than the same for the
corresponding random and scale free model networks �9��.
According to the RMT, this implies that besides randomness,

FIG. 1. �Color online� Adjacency matrix of the largest connected
component of the gene coexpression network with the threshold
value of �0.89. Nodes forming largest connecting cluster are re-
numbered in the sequential order for a clear visualization.
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FIG. 2. �Color online� Degree distribution of the largest con-
nected part of the gene coexpression network for threshold 0.89.
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the network has some specific features. Note that the points
which deviate from GOE statistics �L�20�, as shown in the
Fig. 3�b�, can also be analyzed using deformed GOE statis-
tics as shown in �21�.

B. Eigenvector analysis

Having calculated spacing distribution and �3 statistics,
now we use eigenvector analysis to study the factors respon-
sible for the deviation from RMT. We calculate IPR and
entropy for all the eigenvectors. The eigenvectors, whose
IPR and entropy deviate from the random matrix predictions,
carry the relevant information. The nodes corresponding to
the top contributing components of these vectors may be
important nodes in terms of functionality of the whole net-
work. In the following, we present the eigenvector analysis
results for the gene coexpression network.

Figure 4�a� shows eigenvalues in the increasing order.
Apart from distinguishably seen high eigenvalues toward the
end of the spectra, there is a flat part around the zero eigen-
value. Real world networks, in general, are very sparse and
are reported to have large number of zero eigenvalues
�30,31�. Though for the network we consider here, out of
3179 eigenvalues, only approximately 73 ��2.5% of all ei-
genvalues� are degenerate with the value zero. The degen-
eracy at zero eigenvalue is lesser than many other real-world
networks �9�. There are nearly 3106 nondegenerate eigenval-
ues, which could be taken as the effective dimensionality of
the network.

We also calculate Shannon entropy for all the eigenvec-
tors using Eq. �5� and compare them to those of the random
vectors. Figure 4�b� shows the entropy as a function of

eigennumbers. According to RMT, Shannon entropy of a ran-
dom vector of dimension N=3106 is ln�3106 /2��7.35. Fur-
thermore, RMT-predicted value for Shannon entropy of a
random vector of dimension N=73 �corresponding to degen-
erate part� is ln�73 /2��3.6. Based on these calculations, we
can divide eigenvalues into three sets: �a� The nondegenerate
part that follows RMT. �b� The nondegenerate part, at both
ends and at intermediate eigenvalues, which deviate from
RMT and expected to contain information about important
nodes in the network. �c� The degenerate part with zero ei-
genvalue, 1636–1708, which fluctuates around RMT-
predicted value.

Furthermore, we calculate IPR of all the eigenvectors us-
ing Eq. �6� and plot in Fig. 4�c�. It shows that IPR of several
eigenvalues are localized. For example, vectors correspond-
ing to the 1140–1148 eigenvalues have Ik	0.1, showing that
few components contribute more than the other components.
Following, we enlist some localized eigenvectors corre-
sponding to nondegenerate eigenvalues from set �b�: u1143

�with Ik�0.5�, u1148 �with Ik�0.31�, and u2257 �with Ik

=0.25�. Some of the localized eigenvectors corresponding to
zero eigenvalues are �set �c�� u1636 �with Ik=0.1�, u1670, and
u1671 �with Ik�0.5�. We next analyze the significant con-
tributors of eigenvectors deviating from the RMT predic-
tions. The eigenvector u1143 contains approximately
1 / IPR1143=20 significant participants. Table I presents top
five significant contributors �nodes� corresponding to the lo-
calized eigenvector mentioned above. Note that original gene
numbers are written as in the data sets �6�. As shown in the
Fig. 2, degree distribution of the connected network analyzed
above follows a power law with a fat tail, which means that
few nodes are hubs, and carries the whole network. But ran-
dom matrix analysis of eigenvectors reveals that all the most
contributing nodes listed above have rather small degree.
They are all almost toward bottom of the power-law distri-
bution.

The degrees of all the top contributing nodes in the local-
ized eigenvectors are either well below the average degree or
around the average degree of the network. Gene, assigned

P
(
s
)

0 1 2 3 4

s

0

0.2

0.4

0.6

0.8

10 20 30

L

0.1

0.2

0.3

0.4

∆ 3
(
L
)

(a)

(b)

FIG. 3. �Color online� �a� Spacing distribution and �b� �3�L�
statistics for the eigenvalue spectra of the gene coexpression net-
work. The histogram in �a� corresponds to the numerical values and
solid line is GOE prediction �1� of RMT. The circles in �b� are
numerical results �2� and the solid curve is GOE prediction �3� of
�3.
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FIG. 4. �Color online� �a� Eigenvalues, �b� entropy, and �c� IPR
as a function of eigennumber for the threshold value of 0.89. Open
blue circles in �c� correspond to the localized eigenvectors whose
top contributing nodes are listed in the Table I
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with probe set 202060_at �corresponding to the node 2299 in
the renumbered network�, which is the first top contributing
node corresponding to eigenvector u1143, has a degree 15, the
second top contributing node has a degree 17, the third node
has a degree 20. Fourth and fifth top contributing nodes have
degree 9 each. The top five nodes corresponding to u1148

have degrees 21, 14, 7, 17, and 24. Those are corresponding
to eigenvector u2257 have degrees 1, 1, 6, 3, and 1, respec-
tively. The localized eigenvectors corresponding to set �c�
are u1670, u1671, and top five contributing nodes have degree,
in sequential order from first to the fifth contributing nodes
�see Table I�, 2, 4, 8, 1, 3 and 10, 9, 23, 14, 2, respectively.

Now we change the threshold value to 0.91. This thresh-
old value leads to 25 000 connections in the whole network.
This network has largest connected cluster of size 2439 and
number of connections 22 546. The average degree of this
network is k��20. Again, we renumber the nodes such that
nodes in the connected component take value from 1 to 2439
and calculate the eigenvalues and eigenvectors of the adja-
cency matrix corresponding to this largest connected net-
work. From the spectrum NNSD and �3 statistics are calcu-
lated and these two show similar GOE statistics as shown in
Fig. 3 for r=0.89.

Figure 5 plots eigenvalues �a�, entropy �b�, and IPR �c� as
a function of eigennumber. Entropy and IPR are calculated
using Eq. �5� and �6�, respectively. Out of 2439 eigenvalues,
approximately 96 are degenerate with the value zero. It
means that there are nearly 2343 nondegenerate eigenvalues,
which could be taken as the effective dimensionality of the
network. According to RMT, Shannon entropy of a random
vector of dimension N=2343 is ln�2343 /2��7.0. On the
other hand, RMT-predicted value for Shannon entropy for

degenerate eigenvectors is ln�96 /2��3.9. Based on these
calculations, again we can divide eigenvalues in three sets
�a�–�c�. localized eigenvectors corresponding to nondegener-
ate parts are u835�IPR=0.41�, u1635 �IPR=0.3�, u641�IPR
=0.3�, u840, and u841 �with �=1, IPR=0.195 and 0.24�. Lo-
calized eigenstates corresponding to zero eigenvalues �set
�c�� are u1269 �IPR=0.38�, u1270 �IPR=0.37�, and u1224 �IPR
=0.28�. Significant contributors in localized eigenvectors are
written in Table II.

The degree distribution of the largest component at this
threshold follows a power law as well, revealing the scale-
free nature of this component. Increasing threshold preserves
scale-free property of the network. Some nodes are hubs
which carry the whole network and enjoy the structural im-
portance. Again we find that the top contributing nodes are
not the ones with very high degree. For two different thresh-
old values, Tables I and II show the largest contributing co-
expressing genes in the corresponding localized eigenvec-
tors. We find that choosing threshold is very important for
the analysis of gene coexpression networks, as we can see
that top five largest contributing nodes differ entirely �except
one� as threshold value is changed. This suggests that,
though the gross structure of whole network �Fig. 1� and
scale-free property remains unchanged, value of threshold
has a strong effect on the network leading to entirely differ-
ent sets �except few� of largest contributing nodes for two
different threshold values. The Appendix enlists the gene
names corresponding to the probe set identifiers as given in
Tables I and II.
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FIG. 5. �Color online� Same as Fig. 4 but for threshold value of
0.91. Open blue circles correspond to localized eigenvectors whose
top five contributing nodes are presented in the Table II.

TABLE I. Top five largest contributing nodes in localized eigen-
vectors for network constructed with the threshold value of 0.89.
The nodes are written in the original gene number as given in the
data sets �6�.

Set B Set C

u1143 u1148 u2257 u1670 u1671

202060_at 227636_at 202916s_at 225921_at 21435x_at

217731s_at 205003_at 226832_at 212635_at 203034s_at

201121s_at 211940x_at 209860s_at 208645s_at 200673_at

221775x_at 224616_at 218175_at 221511x_at 221471_at

229630s_at 222203s_at 221810_at 231896s_at 225950_at

TABLE II. Top contributing nodes �genes� in the localized eigenvectors for the threshold value 0.91.

Set B Set C

u835 u1635 u641 u1269 u1270 u1224

210338s_at 208666s_at 201121s_at 211733x_at 201494_at 230416_at

210418s_at 224819_at 208667s_at 230869_at 223209s_at 228283_at

202178_at 209460_at 223716_s_at 228045_at 225284_at 238494_at

38398_at 226395_at 224644_at 211733x_at 201494_at 230416_at

213347x_at 201525_at 200626s_at 242317_at 212788x_at 212474_at
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V. CONCLUSIONS AND DISCUSSIONS

Using RMT, we have analyzed gene coexpression net-
work constructed by applying two different threshold values
to the data obtained from six brain regions that are metaboli-
cally relevant to Alzheimer’s disease �6�. The NNSD of ad-
jacency matrix of the largest connecting component of the
network follows universal GOE statistics �with ��1�. This
universality adds one more feature, based on the spectral
correlations, to the gene coexpression network which is com-
mon with different model networks �9� proposed to capture
various structural properties of real-world networks.

The NNSD gives information about the short-range cor-
relations among the eigenvalues. To probe the long-range
correlations, we have studied spectral rigidity via �3�L� sta-
tistics. This analysis shows that the gene coexpression net-
work considered here follows RMT prediction of GOE for
very long range of L. Beyond this value of L, deviation in the
spectral rigidity is seen, indicating a possible breakdown of
universality. This means the network under consideration has
sufficient randomness, which may be important for robust-
ness of the systems, with regularity, which may be to per-
form functional tasks. Mixtures of random connections and
regular structure have been emphasized at various places.
For instance, information processing in the brain is consid-

ered to be random connections among different modular
structures �32�.

Deviation from the universal RMT predictions identifying
system-specific, nonrandom properties of system under con-
sideration might provide clues about important interactions.
To extract these system-dependent information, we have per-
formed eigenvector analysis. This analysis reveals that there
are some eigenvectors which are highly localized. The com-
ponent l of a given eigenvector relates to the contribution of
node �corresponding gene� l to that eigenvector. Hence, the
distribution of the components contains information about
the number of genes contributing to a specific eigenvector.
Inverse participation ratio IPR, as defined in Eq. �6�, distin-
guishes between one eigenvector with approximately equal
components and another with a small number of large com-
ponents. According to the RMT predictions, the largest con-
tributing nodes �genes� in the localized eigenvectors may
have important function or important functional relations
among them.

TABLE III. Gene names corresponding to the probe sets for the
threshold value 0.89.

Probe set Gene name

202060_at Ctr9, Paf1/RNA polymerase II

227636_at

202916s_at Family with sequence similarity 20, member B

225921_at Ninein �GSK3B interacting protein�
214351x_at Ribosomal protein L13

217731s_at Integral membrane protein 2B

205003_at Dedicator of cytokinesis 4

226832_at

212635_at Transportin 1

203034s_at Ribosomal protein L27a

201121s_at Progesterone receptor membrane component 1

211940x_at

209860s_at Annexin A7

208645s_at Ribosomal protein S14

200673_at Lysosomal protein transmembrane 4 alpha

221775x_at Ribosomal protein L22

224616_at Dynein, cytoplasmic 1

218175_at Coiled-coil domain containing 92

221511x_at Cell cycle progression 1

221471_at Serine incorporator 3

229630s_at Wilms tumor 1 associated protein

222203s_at Retinol dehydrogenase 14

221810_at RAB15, member RAS onocogene family

231896s_at Density-regulated protein

225950_at

TABLE IV. Gene names corresponding to the probe sets for the
threshold value 0.91

Probe set Gene name

210338s_at Heat shock 70kDa protein 8

208666s_at Suppression of tumorigenicity 13

201121s_at Progesterone receptor membrane component 1

211733x_at Sterol carrier protein 2

201494_at Prolylcarboxypeptidase

230416_at

210418s_at Isocitrate dehydrogenase 3 �NAD+�
224819_at Transcription elongation factor A �SII�
208667s_at Suppression of tumorigenicity 13

230869_at Family with sequence similarity 155

223209s_at Selenoprotein S

228283_at COX assembly mitochondrial protein homolog

202178_at Protein kinase C, zeta

209460_at 4-aminobutyrate aminotransferase

223716s_at Zinc finger, RAN-binding domain

228045_at

225284_at DnaJ �Hsp40� homolog, subfamily C

238494_at TNF receptor-associated factor 3

38398_at MAP-kinase activating death domain

226395_at Hook homolog 3 �Drosophila�
224644_at

211733x_at Sterol carrier protein 2

201494_at Prolylcarboxypeptidase

230416_at

213347x_at Ribosomal protein S4, X-linked

201535_at Ubiquitin-like 3

200626s_at Martin 3

242317_at HIG1 hypoxia inducible domain family

212788x_at Ferritin, light polypeptide

212474_at AVL9 homolog �S. cerevisiase�
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The largest connected component is scale-free, indicating
the structural importance of few nodes �hubs�. Eigenvector
analysis shows that top contributing nodes in the localized
eigenvectors have relatively low degrees. Note that genes
which are hubs or those which connect different communi-
ties are also important, as shown by several earlier studies in
the network framework �5,13�, but the aim of the present
work is look for the important genes beyond these structural
measures. Changing the value of threshold, while keeping
the scale-free structure of network the same, has drastic im-
pact on the localization property of eigenvectors. Almost all
the top contributing nodes differ for two different threshold
values, indicating impact on the global properties of the un-
derlying network.

Lastly, we discuss here the importance of the analysis and
future implications of the results presented in the paper. Sev-
eral studies have shown that the development of multitarget
drugs might give better results than the traditional methods
targeting a single protein. Single target design might not al-
ways give satisfactory results, as there might be a backup
system, which replaces the function of the inhibited target
protein. By using multitarget drugs, one can decrease the
functionality of entire protein cascades producing more ef-
fective results. For example, studies have shown that aging is
strongly linked with age-related diseases and they share a
common signaling network. Signaling hubs of the age-
related protein-protein interaction subnetwork may be good
candidates for age-related drug targets. Multitarget drugs at-

tacking hubs of the protein-protein interaction network,
“hub-links” �links connecting hubs�, bridges �intermodular
links having high “betweenness centrality”�, or nodes in the
overlap of numerous network modules, might give better re-
sults �33,34�. Similarly, targeting genes corresponding to the
largest contributing nodes in localized eigenvectors may lead
to important effect as well. Future investigations are sought
in order to know the functionality of these genes correspond-
ing to the top contributing nodes in the localized eigenvec-
tors, which could be then used for such multitarget drug
designs.

APPENDIX

Tables III and IV correspond to probe set identifiers from
Tables I and II, respectively. First columns of these tables are
probe set identifiers �Affymetric ID� and second columns
dictate the corresponding gene names. However, the func-
tions of some transcripts are not known yet and some of
them have no gene name. The value “-” in the gene name
column indicates that information is not available. Note that
there are many reasons for probe sets without detailed anno-
tation. We know the sequence on microarray for each probe
sets. On the chip, we get all expressed genes, but we do not
have secure info for all the gene functions. As the knowledge
is growing with the latest available technologies, this gap is
decreasing with time. One sure information for the probe set
is the Affymetric ID as given in the Tables I and II �26�.
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